Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available January 1, 2026
-
Markostamou, Ioanna (Ed.)People differ substantially in their vulnerability to distraction. Yet, many types of distractions exist, from external stimulation to internal thoughts. How should we characterize individual differences in their distractibility? Two samples of adult participants (total N = 1220) completed a large battery of questionnaires assessing different facets of real-world distractibility. Latent modeling revealed that these measures could be explained by three correlated-yet-distinct factors: external distraction, unwanted intrusive thoughts, and mind-wandering. Importantly, about 80% of the total variance in these three factors could be explained by a single higher-order factor (d) that could be construed in terms of a person’s general distractibility, and this general distractibility model was replicated across the two samples. We then applied the general distractibility model to understand the nature of ADHD symptomatology and hyperfocus (an intense state of long-lasting and highly focused attention). d was substantially associated with self-reported ADHD symptoms. Interestingly, d was also positively associated with hyperfocus, suggesting that hyperfocus may, to some degree, reflect attention problems. These results also show marked consistencies across the two samples. Overall, the study provides an important step toward a comprehensive understanding of individual differences in distractibility and related constructs.more » « less
-
Abstract On April 13, 2021, the CDC announced that the administration of Johnson and Johnson’s COVID-19 vaccine would be paused due to a rare blood clotting side effect in ~ 0.0001% of people given the vaccine. Most people who are hesitant to get a COVID-19 vaccine list potential side effects as their main concern (PEW, 2021); thus, it is likely that this announcement increased vaccine hesitancy among the American public. Two days after the CDC’s announcement, we administered a survey to a group of 2,046 Americans to assess their changes in attitudes toward COVID-19 vaccines. The aim of this study was to investigate whether viewing icon arrays of side effect risk would prevent increases in COVID-19 vaccine hesitancy due to the announcement. We found that using icon arrays to illustrate the small chance of experiencing the blood clotting side effect significantly prevented increases in aversion toward the Johnson and Johnson vaccine as well as all other COVID-19 vaccines.more » « less
-
Abstract Working memory (WM) is a fundamental cognitive ability that supports complex thought but is limited in capacity. Thus, WM training interventions have become very popular as a means of potentially improving WM-related skills. Another promising intervention that has gained increasing traction in recent years is transcranial direct current stimulation (tDCS), a noninvasive form of brain stimulation that can modulate cortical excitability and temporarily increase brain plasticity. As such, it has the potential to boost learning and enhance performance on cognitive tasks. This study assessed the efficacy of tDCS to supplement WM training. Sixty-two participants were randomized to receive either right prefrontal, left prefrontal, or sham stimulation with concurrent visuospatial WM training over the course of seven training sessions. Results showed that tDCS enhanced training performance, which was strikingly preserved several months after training completion. Furthermore, we observed stronger effects when tDCS was spaced over a weekend break relative to consecutive daily training, and we also demonstrated selective transfer in the right prefrontal group to nontrained tasks of visual and spatial WM. These findings shed light on how tDCS may be leveraged as a tool to enhance performance on WM-intensive learning tasks.more » « less
-
Abstract Research investigating transcranial direct current stimulation (tDCS) to enhance cognitive training augments both our understanding of its long‐term effects on cognitive plasticity as well as potential applications to strengthen cognitive interventions. Previous work has demonstrated enhancement of working memory training while applying concurrent tDCS to the dorsolateral prefrontal cortex (DLPFC). However, the optimal stimulation parameters are still unknown. For example, the timing of tDCS delivery has been shown to be an influential variable that can interact with task learning. In the present study, we used tDCS to target the right DLPFC while participants trained on a visuospatial working memory task. We sought to compare the relative efficacy of online stimulation delivered during training to offline stimulation delivered either immediately before or afterwards. We were unable to replicate previously demonstrated benefits of online stimulation; however, we did find evidence that offline stimulation delivered after training can actually be detrimental to training performance relative to sham. We interpret our results in light of evidence suggesting a role of the right DLPFC in promoting memory interference, and conclude that while tDCS may be a promising tool to influence the results of cognitive training, more research and an abundance of caution are needed before fully endorsing its use for cognitive enhancement. This work suggests that effects can vary substantially in magnitude and direction between studies, and may be heavily dependent on a variety of intervention protocol parameters such as the timing and location of stimulation delivery, about which our understanding is still nascent.more » « less
An official website of the United States government
